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LE'ITER TO THE EDITOR 

Critical slowing down in local dynamics simulations 

Hans-Otto Heuer 
Theoretische Physik 111, Ruhr-Universitit Bochum, Federal Republic of Germany 

Received 2 December 1991; in final form 4 February 1992 

Abstract. We report Some universal and non-univenal aspects of the critical dynamics of 
the three-dimensional king model, obtained in recent extensive Monte Carlo finite-size 
simulations. We show that the time-dependence of the magnetization of finite lattices is 
composed of two kinds of fluctuations s t  the critical point: (i) phase fluctuations from one 
metastable minimum of the free energy to the other, dominating the long-time behaviour 
a f the  magnetization: (ii) critical fluctuations inside each minimum. decaying on a compara- 
tively short timescale. Both kinds of fluctuations show up the same critical exponent 
z=2.10+0.02, which is also in excellent agreement with the exponent i of energy 
fluctuations. 

The dynamical behaviour of spin systems is a long-studied topic in statistical physics. 
An important feature is the divergence of the characteristic timescale of the system at 
its critical point [I]. This critical slowing down leads to a divergence T =  AL' of the 
relaxation time with increasing lattice size L at the critical point T,. As a consequence, 
the number of uncorrelated data in measurements of the static and dynamic properties 
of a system are heavily reduced [2]. This effect is very large in local dynamics ( z  = 2) 
[3-81. New dynamical algorithms have been proposed which successfully reduce critical 
slowing down by cluster updating techniques (z = 0.5) and are superior for large system 
sizes [9, lo]. 

We have studied the local dynamics of a three-dimensional king system at its 
critical temperature T, [ll-131. The dynamical behaviour is characterized by the 
correiation function oi some quantity ~ ( t )  iike magnetization energy, defined by 

~ 

A( t'+ t ) A ( t ' )  -A(  t ' ) 2  
Qa(t)= __ - 

A ( ~ ' ) ~ - A ( ~ T  

where the bar denotes the time average over the whole Markov sequence of states 
generated according to the local dynamics. The long-time behaviour of is 
dominated by a singie exponentiai decay ji4j, Characterized by the asymptotic relaxa- 
tion time T of A. We have used the finite-scaling law [IS] T = AL', valid at T,, for the 
calculation of the critical exponent z. 

We have invested about 9 x 10l2 single spin-flips for this project, more than ever 
before on a general purpose computer. This was achieved by a considerable amount 
of computing time at HLRZ and by a program based on multispin coding which runs ". r..pmrl A T X  ...;II;,.~ .nil. ..-- I . m n ~  ~ ~ A v G . . ~ ~ ~ . ~ ~ .  r t A i  

We first discuss some qualitative aspects of the dynamical behaviour of finite systems 
at the critical point. Then, we present our results concerning the dynamical critical 
exponent z. 
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It is well known that finite systems do  not show the perfect symmetry breaking and 
ergodicity breaking as the infinite system does. As a consequence, finite systems display 
phase changes in the ordered phase which do not occur in the infinite system. It has 
been shown in an instanton calculation within the oLw-model [17] that finite systems 
in the low-temperature region T-K T, tunnel from one metastable state to the other 
with a relaxation time IR-e2"("L4-' . The mechanism of this phase change is the 
activated movement of the interface between up- and down-oriented domains. This 
tunnelling phenomenon has been investigated numerically and the interface tension 
u ( T )  has been determined via the relaxation time I, [18]. 

We first show that this tunnelling phenomenon even exists at the critical point T, 
where it is mixed with critical fluctuations. As opposed to the low-temperature regime, 
the timescale of phase fluctuations increases with a power law and with the same 
exponent z as critical fluctuations. We have sampled the magnetization 

and the energy 
N 

E = J / N  uiq (3) 
i j = 1  

normalized to the number of spins N = L' in the lattice. As usual in Monte Carlo 
studies of dynamics [7, 81, the definition of the magnetization includes the sign or' 
phase of the system. To give a qualitative impression of the dynamics, figure l ( a )  
shows the magnetization S of a 603-system at the critical temperature TJJ = 4.511 536 
[ l l -131 of the infinite system. Data points are shown every 160 updates of the whole 
lattice. The system fluctuates critically within one of the metastable states S( T ) .  At 
large time intervals, a phase change occurs from one minimum of the free energy to 
the other, leading to a sign change of S. This is indicated by additional data points 
on top and bottom of the figure. The characteristic time for staying in a minimum 
depends on the system size and on the temperature. Figure l ( b )  displays a short time 
interval of figure l(a) with a better time resolution (data points every 16 updates). It 
becomes evident that critical fluctuations inside the metastable minima occur on a 
much shorter timescale compared to phase fluctuations. 

The dynamical behaviour of a finite system at the critical point is suspected to be 
a mixed process in language of stochastic processes: critical fluctuations are mixed 
with phase fluctuations in a temperature interval T,( L) < T < T J L )  around the critical 
point. In order to analyse this mixed process quantitatively, we have studied separately 
the time-dependence of the phase p = sign(S) and of the absolute value of the magnetiz- 
ation M =IS[. As an example, figure 2 ( a )  shows the correlation function OS, Op and 
OM in a logarithmic plot, calculated from a simulation of 50'-lattices at T,. It is obvious 
that the correlations of the magnetization are completely determined by the correlations 
of the sign S alone. The quantitative analysis shows that both correlation functions 
QS and OD decay with the same asymptotic relaxation time which is considerably 
larger than that of a,,,. However, the initial relaxation of Os and OD is different. This 
is shown in figure 2(b) ,  which displays the relaxation during the first 100 Monte Carlo 
steps. The sign-correlation decreases sharply within the first 10 Monte Carlo steps 
compared to the magnetization correlation Os. The reason is that zero-passage of S 
give a large contribution to O,, but almost no contribution to Os since the absolute 
value of S is small when passing S = 0. 
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Figure 1. ( 0 )  Time-dependence of the magnetization S of a 60'-system at the critical 
temperature of the infinite system Je=4.511 536 (data points every 160 laltice updates). 
Phase fluctuations and critical fluctuations form a mixed process near J,. ( b )  A short time 
interval of ( a )  (data paints every 16 lattice updates). Critical fluctuations within a minimum 
of the free energy are well distinguished from fluctuations from one phase to the other. 

t (MCS) 

Before we proceed to the determination of the critical exponent z, we point out 
some practical consequences of the analysis sketched above. It seemed to be a general 
belief that the largest relaxation time is relevant for statistical errors of magnetic data 
[19]. Since we have shown that the largest relaxation time is diaated by phase- 
fluctuations only, this expectation is easily seen to be wrong: we know from the theory 
of stationary random processes that independent of the physical nature of a process 
the relevant timescale for statistical errors depends on the process/quantity A( I) under 
consideration. It is T~ for the absolute value of the magnetization M and T~ for the 
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Flgure 2. ( a )  Logarithmic plot of the correlation function of S, of its sign and its absolute 
value M calculated of a single run with 2.7 million updates of a 50’-system. The process 
S ( t )  is entirely determined by fluctuations of the sign of S ( l ) ,  i.e. Ruauations from one 
phase to the other. ( b )  Initial relaxation of correlations within the P n t  100 Monte Carlo 
steps. 

energy. The relevant relaxation time for the susceptibility, which is proportional to 
( M 2 ) ( T >  T,) and ( ( M - ( M ) ) ’ ) ( T <  T.) is rMx, which is of the order of T~ and rE. 
The symmetry of the system under sign-reversal implies that there is no thermodynamic 
property of the infinite system which depends on the sign or phase of the system; thus, 
the large relaxation time rs is irrelevant for statistical errors Monte Carlo sampling. 
This has been shown explicitly by a comparison of calculated and measured errors [ZO]. 

We have performed a very detailed analysis of correlation data for lattice sizes L 
between 20 and 60; details will be presented elsewhere [ZO]. We have shown that the 
ansatz of previous Monte Carlo work [8] to fit correlation data in the whole time range 
to a 2- or 3-exponential ansatz incorrect [20]. The correct way of analysis is to identify 
the asymptotic time range by deviations of the power spectral densities of M, S and 
E from their asymptotic Lorentzian form [ZO]. The I-exponential fit in the asymptotic 
time range leads to very precise relaxation times; errors of rr have been determined 
from averaging over several (6-12) runs per lattice size. As a typical example of our 
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Figure 3. Logarithmic plot of GS, QM and Q E  and their one-exponential fits in the 
asymptotic time range. Note that QM and QB are statistically much bener than Os. The 
timescale of these correlations ir about six times smaller !hen !he scale of as. 

data and analysis, we show the time-dependence of the correlation data @,, @ E  and 
@ E  and as of a 503 system at the critical temperature T, (figure 3), calculated from 
11 million updates of the lattice. The asymptotic relaxation time obtained from a single 
exponential fit of as in the asymptotic time region (solid line) is T~ = 1232. From the 
same data set, we show the correlation functions a,., and @ E  with their one-exponential 
fits in the asymptotic time region, leading to T~ = 195 and T~ = 195. QM- and @ E  have 
the same asymptotic relaxation times, but the initial time-dependence of @, and @, 
is very different: energy correlations reach their asymptotic exponential behaviour 
below Q E  = 0.1, whereas M-correlations are in the asymptotic time range already for 
tPM = 0.6. 

As usual we have fitted our results for T(L) by a least-squares fit with error weights 
to the finite-size scaling T(L) = AL'. For each of the three quantities M, S and E, we 
have obtained values of z which are very close to one another: 

z, = 2.098*0.006 

zE = 2.09 * 0.02 

zs =2.12*0.02. 
(4) 

We conclude that magnetic and caloric properties are governed by the same exponent 
z = 2.10 within an error bound of 0.02. This verifies universality of dynamic critical 
phenomena; previous simulations did only arrive at a consistency statement since the 
errors of z were too large. A fit of the r(L)-data assuming the same relative error of 
T ( L )  for all lattice L gives z =2.09*0.01. The resulting best fits are shown in figures 
4 and 5.  The non-universal amplitudes obtained from this fit are A, = 0.0530, A, = 
0.0539 and As = 0.310. Thus, the absolute timescale for M -  aand E-correlations is the 
same within our errors. We stress that the exponential increase of T ~ ,  found below T, 
[IS], is changed to the power law behaviour at the critical point. Obviously, the 
dynamics of interface fluctuations becomes triggered by critical fluctuations within the 
minima, so that the asymptotic relaxation time T~ scales as L' with the same exponent 
z as for M and E. 
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Figure+ Fit oftheasymptoticrelanationtimes r,(L)tothe finite-sizesdingfom 7 = AL'. 
The free parameters o f  the error-weighted fit are the amplitude A and the exponent 1. The 
symbol-size for each r-value is given by ~ f d ~ .  
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Flgure 5. The same error-weighted fit as in figure 4 for the asymptotic relaxation times T~ 

and T ~ .  The errors of vE and I~ are larger than for leading to a less precise value for I. 

The error of our simulation and exponent z is considerably smaller than in previous 
Monte Carlo works on dynamical behaviour. The reason is that we have sampled more 
data and we have done a more detailed analysis. Moreover, previous studies, based 
on eS, have extracted only the fraction T,,, / T ~  = 0.1 5 of the statistical contents of their 
dynamical simulation data compared our analysis of e,,,. Our value of z = 2.10*0.02(4) 
is significantly larger than the Rc-estimate z = 2 [21-231 and other recent Monte Carlo 
values [7,8]. We have therefore analysed our relaxation times by a fit to the power 
law plus finite-size scaling corrections of the form T = AL'( 1 + assuming a value 
of z =2.02 and leaving A, B and w to be determined by the data-fit. The data are 
consistent with such a fit, but at the expense of significant finite-size corrections. The 
esiimaior of ihe corresponding ieasr-squares fir is comparabie io the conveniionai 
simple power law with z = 2.10, but it is not better. If a lower value of z around 2 is 
asymptotically valid, then finite-size corrections in critical dynamics are much more 
pronounced than in the static case where finite-size corrections are very small for the 
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lattice sizes considered here. We have checked this with our own susceptibility results. 
In accord with previous simulations, we have found finite-size corrections of y J v  from 
the asymptotic value which are of the order 0.02 and smaller for L<30. 

Recent results of simple hydrodynamic model equations and their discretized 
version have shown that the effects of the discrete nature of a dynamical model may 
be competitive to fluctuation effects 1241.~ It seems plausible that dynamical critical 
phenomemna are similarly influenced by the discretization of time and space in 
Monte Carlo simulations. These effects may account for the deviation between the 
theoretical value of z - 2 [21-231 and the result z = 2.10 of the present simulation. 
However, it is not clear whether the discretization of the dynamics leads to strong 
scaling corrections or even to a new universality class different from the expected 
cLw-field theory. 

This work was supported by the Sonderforschungshereich SFB 237 'Disorder and large 
fluctuations'. The author is grateful to HLRZ Julich for sufficient computing time to 
carry out these simulations on the CRAY Y-MP 832. It is a pleasure to thank D Stauffer 
for a number of helpful comments. 
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